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Formation of a standing-light pulse through collision of gap solitons
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Results of a systematic theoretical study of collisions between moving solitons in a fiber grating are pre-
sented. Various outcomes of the collision are identified, the most interesting one being merger of the solitons
into a single zero-velocity pulse, which suggests a way to create pulses of ‘‘standing light.’’ The merger occurs
with the solitons whose energy takes values between 0.15 and 0.35 of the limit value, while their velocity is
limited by '0.2 of the limit light velocity in the fiber. If the energy is larger, another noteworthy outcome is
acceleration of the solitons as a result of the collision. In the case of mutual passage of the solitons, inelasticity
of the collision is quantified by the energy-loss share. Past the soliton’s stability limit, the collision results in
strong deformation and subsequent destruction of the solitons. Simulations of multiple collisions of two
solitons in a fiber-loop configuration are performed too. In this case, the maximum velocity admitting the
merger increases to'0.4 of the limit velocity. The influence of an attractive local defect on the collision is also
studied, with the conclusion that the defect does not alter the overall picture, although it traps a small-
amplitude pulse. Related effects in single-soliton dynamics are considered too, the most important one being
the possibility of slowing down the soliton~reducing its velocity to the above-mentioned values that admit
fusion of colliding solitons! by passing it through an apodized fiber grating, i.e., one with a gradually increas-
ing Bragg reflectivity. Additionally, transformation of an input sech signal into a gap soliton~which is quan-
tified by the share of lost energy!, and the rate of decay of a quiescent gap soliton in a finite fiber grating, due
to energy leakage through loose edges, are also studied.

DOI: 10.1103/PhysRevE.68.026609 PACS number~s!: 42.81.Dp, 42.50.Md, 42.65.Tg, 05.45.Yv
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I. INTRODUCTION

Bragg gratings~BGs! are structures in the form of a per
odic variation of the core refractive index, which are writt
on a fiber or other optical waveguide@1#. Devices based on
fiber gratings, such as filters and gain equalizers, are am
the most widely used components of optical systems.Gap
solitons~in a more general context, they are called BG so
tons @2#! exist in fiber gratings due to the interplay betwe
the BG-induced effective dispersion~which includes a gap in
the system’s linear spectrum! and the Kerr nonlinearity of the
fiber’s core. Exact analytical solutions for BG solitons in
fiber-grating model were found in Refs.@3,4#, and their sta-
bility was studied later, showing that approximately half
them are stable~see details below! @5,6#. Spatial solitons and
their stability in a model of a planar BG-equipped wav
guide, taking into regard two polarizations of light, we
recently considered in Ref.@7#.

Lately, a lot of attention has been attracted to the po
bility of capturing ‘‘slow light’’ @8#, and, in particular, of
slowly moving optical solitons@9# in various settings. The
fiber grating is a natural candidate for a nonlinear medi
where it may be possible to stop the light, as exact soluti
for zero-velocity BG solitons, in which the left- and righ
traveling waves are in permanent dynamical equilibrium,
available in the corresponding model@3,4#, and some of
them are stable@5,6#. However, BG solitons that were ob
served in the first experiments were fast ones, moving
velocity '75% of the limit light velocity in the fiber@10#. A
possible way to capture a zero-velocity soliton is to use
attractive finite-size@11# or d-like @12# local defect in the BG
which attracts solitons~it was demonstrated in Ref.@13# that
1063-651X/2003/68~2!/026609~9!/$20.00 68 0266
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a defect can also stimulate a nonlinear four-wave interac
without formation of a soliton!. Moreover, it is possible to
combine the attractive defect with local gain, which open
way to create a permanently existing pinned soliton, even
the presence of loss@14#.

One of the objectives of this paper is to explore the p
sibility of creating standing BG solitons as a result of
head-on collision between two identical moving ones. Co
sions are quite feasible from the experimental standpoint
the characteristic length necessary for the formation of a
soliton is .2 cm @10#, while uniform fiber gratings with a
length of 1 m or even longer are now available. In@3#, where
exact solutions for the moving solitons were found, th
collisions were already simulated, with the conclusion th
they passed through each other developing intrinsic vib
tions, which may be explained by excitation of an intrins
mode which a stable BG soliton supports@5#.

Actually, broad small-amplitude BG solitons are asym
totically equivalent to nonlinear-Schro¨dinger~NLS! solitons,
and hence collisions between them are completely ela
@15#. However, in a more generic case results may be dif
ent, as the standard fiber-grating model@see Eqs.~1! below#
is not an integrable one, in contrast to the NLS equati
Systematic simulations are thus needed to study head-on
lisions between BG solitons, the results of which are
ported below~in Sec. IV, after presenting the model in Se
II, and considering the one-soliton solution in Sec. III!. The
main finding is that, at relatively small values of the solito
velocity 6c, and not too large values of the soliton energ
in-phase solitons merge into a singlestandingone. We find
the maximum velocityc admitting the merger, which is'0.2
of the maximum light velocity in the fiber.
©2003 The American Physical Society09-1
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As mentioned above, in the first experiments the BG s
tons were observed with the velocity'0.75; hence it is nec-
essary to slow down the solitons before the collision, brid
ing the gap between the velocity values 0.75 and 0.2, if
formation of a standing pulse is an objective. Using the w
known technique based on the balance equation for the
ton’s momentum@16#, we demonstrate in Sec. III that th
slowing down can be achieved in a so-called apodized g
ing, i.e., one with the grating strength~Bragg reflectivity!
subject to a slow variation along the fiber. In fact, apodiz
gratings are easily fabricated and commonly used for o
applications~in particular, to facilitate coupling of light into
the grating! @1#. We demonstrate that reducing the soliton
velocity from 0.75 to 0.2 requires enhancing the Bragg
flectivity by a rather modest factor'1.48.

In the case when the solitons pass through each other
quantify the collision by the energy-loss share. Sec. IV
cludes diagrams which display, in the plane of the solito
velocity and energy, all possible outcomes of the collis
between both in-phase andp-out-of-phase solitons. In the
former case, possible outcomes are, in addition to the me
passage of the solitons with decrease orincreaseof their
velocities, and destruction of the solitons in the case w
their energy is too large.

In Sec. V, we report the results of simulations of multip
collisions between two solitons, to model the situation in
fiber loop. Although experiments with a loop compos
solely of a fiber grating have not yet been reported, num
ous experiments have been done for various fiber-ring se
that include a passive or active pump and one or several
as a crucially important ingredient@17–19#. In particular,
stable circulation of picosecond temporal pulses was
served in ring resonators of this type@19#. We demonstrate
that multiple collisions between BGs in the loop are imp
tant in increasing the maximum velocity that admits t
merger from the above-mentioned value'0.2 to'0.4 of the
maximum light velocity in the fiber.

We have also carried out simulations to check if inclus
of a local attractive defect may assist the fusion of collidi
solitons. In Sec. VI, we demonstrate that the defect does
essentially affect the situation; however, a trapped pu
which captures a small share of the initial energy of
solitons, appears as a result of the collision.

Finally, in Sec. VII we report some related results perta
ing to single-soliton dynamics, viz., reshaping of an inp
pulse of a sech~NLS soliton! or Gaussian form into a BG
soliton in the fiber grating, and gradual decay of a gap s
ton in a finite-length grating due to the energy leaka
through the open ends. Section VIII concludes the paper

II. THE MODEL

The commonly adopted model of nonlinear fiber gratin
is based on a system of coupled equations for the right-~u!
and left- (v) traveling waves@2#,

iut1 iux1kv1@~1/2!uuu21uvu2#u50,

iv t2 ivx1ku1@~1/2!uvu21uuu2#v50, ~1!
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wherex and t are the coordinate and time, which are sca
so that the linear group velocity of light is 1, andk is the
Bragg-reflectivity coefficient. In the case of the uniform gra
ing, Eqs.~1! can be additionally normalized so as to setk
51, which we do below. However, in the case of th
apodized grating,k is a function ofx.

Exact solutions to Eqs.~1! with k[1, which describe
solitons moving at a velocityc (c2,1), were found in Refs.
@3# and @4#:

u5aW~X!exp@y/21 if~X!2 iT cosu1 if0#,

v52aW* ~X!exp@2y/21 if~X!2 iT cosu1 if0#. ~2!

Here, the asterisk stands for complex conjugation, andu is
an intrinsic parameter of the soliton family which takes v
ues 0,u,p and is proportional to the soliton’s energ
~alias the norm!

E[E
2`

1`

@ uu~x!u21uv~x!u2#dx5
8u

~312c2!
. ~3!

Further,a22[ 3
2 1c2, tanhy[c, f0 is an arbitrary real con-

stant, and

X5~12c2!21/2~x2c t!, T5~12c2!21/2~ t2cx!,

f~X!5a2sinh~2y!tan21$tanh@~sinu!X#tan~u/2!%, ~4!

W~X!5~sinu!sech@~sinu!X2 i ~u/2!#.

Below, we use these exact solutions as initial conditions
simulate collisions between identical solitons with oppos
velocities.

Lastly, to consider the influence of a local defect on t
collision ~see Sec. VI below!, Eqs. ~1! are modified as in
Refs.@11# and @12#:

iut1 iux1v1@~1/2!uuu21uvu2#u52d~x!~Gu2kv !,
~5!

iv t2 ivx1u1@~1/2!uvu21uuu2#v52d~x!~Gv2ku!,
~6!

where G.0 and k.0 account for a local increase of th
refractive index and suppression of the Bragg reflectiv
respectively. In this case, we setk[1 away from the point
x50, cf. Eqs.~1!.

III. SLOWING DOWN A SOLITON IN THE APODIZED
FIBER GRATING

Before proceeding to the consideration of collisio
proper, we analyze the possibility of controlling the veloc
of a soliton in a BG where the reflectivityk is subject to
smooth variation along the fiber, which is described by E
~1! with k5k(x). To this end, we notice that the uniform
BG with k5const conserves the field momentum,

P5E
2`

1`

~ux* u1vx* v !dx. ~7!
9-2
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FORMATION OF A STANDING-LIGHT PULSE THROUGH . . . PHYSICAL REVIEW E68, 026609 ~2003!
The calculation of the expression~7! for the exact soliton
solution given by the expressions~2! and~4!, wherek is kept
as a free constant parameter, rather than being set equal
yields the soliton’s momentum,

Psol5
8kc

~312c2!A12c2 Fu cosu1
4~u1sinu!sin2~u/2!

~312c2!~12c2!
G
~8!

~note that for smallc the proportionality coefficient betwee
P andc, i.e., the soliton’s mass, is always positive!.

If the reflectivity is subject to a spatial modulationk
5k(x), the momentum is not conserved; instead, it evol
in time according to the following equation, which direct
follows from Eqs.~1!:

dP

dt
52E

2`

1`dk

dx
Re~uv* !dx. ~9!

In the case when a soliton with a velocityc moves in the
apodized BG with slowly varyingk(x), so thatk is almost
constant on a spatial scale corresponding to the soliton’s s
the gradientdk/dx can be written before the integral in Eq
~9!, and then the remaining integral can be explicitly calc
lated in the first approximation, substituting the expressi
~2! and ~4! for the unperturbed soliton:

d

dt
Psol52

8A12c2

312c2

dk

dx
@2~sinu!~11cosu!

2u~cosu!~112 cosu!#. ~10!

The expression in the square brackets in Eq.~10! is always
positive foru<p/2 ~i.e., for stable solitons, see below!, but
it changes sign and becomes negative atu.u0'0.73p.

An effective equation for the velocity of the soliton in th
apodized BG with smoothly varyingk(x) can be obtained by
substitution of the expression~8! into the left-hand side of
Eq. ~10! and taking into consideration that the soliton’s e
ergy, given by Eq.~3! ~which is not altered ifkÞ1) remains
a dynamical invariant in the case of thex-dependentk. In
particular, in the case whenc2&1/2, which corresponds to
the case of interest, withc&0.75 ~see above!, the energy
conservation approximately reduces to settingu5const, and
hence Eq.~10! directly yields an evolutional equation for th
velocity. This equation is greatly simplified in the caseu
&0.2p:

d

dt

ck

A12c2
'2A12c2

dk

dx
. ~11!

A noteworthy consequence of Eq.~11! is that a quiescen
soliton (c50) in the apodized grating will start to move wit
the accelerationdc/dt'2d(ln k)/dx.

In order to solve Eq.~11!, we notice that the moving
soliton actually experiences the smoothly modulatedk(x) as
a function of time, so thatdk/dt'c(dk/dx). Substituting
this into Eq.~11!, the resulting equation can be easily int
grated, yielding the final result
02660
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k2

k in
2 ~12cin

2 !, ~12!

wherek in andcin
2 are the initial values of the reflectivity an

velocity. In particular, we notice that, in order to reduce t
velocity from the value 0.75 to 0.2, which is a necessa
prerequisite for the formation of standing solitons as a re
of collision between moving ones~see Introduction!, it is
enough to use the apodized BG in which the reflectivity
gradually increased by a factor ofkfin /k in'1.48. If the value
of u is larger (0.2p&u<0.5p; still larger values are no
relevant as the soliton will be unstable!, the analysis of Eq.
~10! is slightly more complex, but the final result is qui
similar.

IV. COLLISIONS BETWEEN SOLITONS

A. The mode of simulations

In this section, we consider collisions between the B
solitons~2!. In a real experiment, an initially launched puls
should pass some distance to shape itself into a soliton
mentioned above, in previously reported experiments
distance was quite small,;2 cm @10#, and hence this is no
an important issue. Nevertheless, it may be relevant to s
rately simulate shaping of an initially launched singl
component pulse into a steady-shape BG soliton. This wil
done below in Sec. VI.

Simulations of collisions were performed by means of t
split-step fast-Fourier-transform method. First, collisions b
tween solitons in the case of repulsion between them, wi
phase differenceDf05p, were considered. It was foun
that the solitons bounce off each other quasielastically, w
out generation of any visible radiation or intrinsic vibratio
of the solitons, if their initial velocities6c are small enough,
and the solitons are ‘‘light,’’ having a sufficiently small valu
of u. Collision-induced radiation becomes conspicuous if
solitons are ‘‘heavier’’ or faster; see the example shown
the inset to Fig. 1. Figure 1 displays a boundary in the pla
(c,u) above which the collision results in generation of
noticeable amount of radiation, in the caseDf05p.

Then, collisions between in-phase solitons, withDf050
~the case of attraction!, were simulated. In this case, a num
ber of various outcomes can be distinguished. A summar
the results is displayed in Fig. 2 in the form of a diagram
the (c,u) plane, different outcomes being illustrated by t
set of generic examples displayed in Fig. 3.

The simplest case is the collision of solitons with smalu
~region E in Fig. 2; see also Fig. 4 below!. In accordance
with the results reported in Ref.@15#, these solitons collide
elastically, which is easily explained by the fact that they a
virtually tantamount to NLS solitons.

B. Merger of solitons and spontaneous symmetry breaking

The most interesting outcome of the collision ismergerof
two solitons into a single one, which takes place in the
gion 0<c,0.2, 0.15p,u,0.35p ~area M in Fig. 2!. A
typical example of the merger is shown in Fig. 3~a!, its no-
9-3
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ticeable peculiarities being that the merger takes place a
multiple collisions and the finally established soliton demo
strates persistent internal vibrations@see the lowest panel o
Fig. 3~a!#. As judged from the lowest panel of Fig. 3~a! ~and
other similar plots!, the amplitudes of these internal vibra
tions being about 10–20 % of the soliton’s amplitudes.
this region of the values ofu ~areaM in Fig. 2!, the attraction
between initially quiescent (c50) in-phase solitons, which
are placed at some distance from each other, also resu
their merger@see Fig. 3~b!#. At the border between the re
gionsM andE, the interaction between initially quiescent
slow solitons results in their separation after several co
sions, which is accompanied by a conspicuous spontan
symmetry breaking~SSB! @see the example in Fig. 3~c!#.
Note that the SSB resembles what was observed in a m
of a dual-core fiber grating, in which the nonlinearity and B
were carried by different cores@20#. As in that case, SSB
may be plausibly explained by a fact that the ‘‘lump,’’ whic
temporarily forms as a result of the attraction between
solitons in the course of the collision between them, may
subject to modulational instability, and hence a small asy
metry in the numerical noise may provoke conspicuous s
metry breaking in the eventual state. Indeed, it is well kno
that any spatially uniform solution to Eqs.~1! is modulation-
ally unstable@21#, and the instability may extend to a suffi
ciently broad state, like the above-mentioned ‘‘lump.’’

C. Quasielastic collisions

Increase ofu brings one from the regionM to F ~Fig. 2!,
where solitons collide quasielastically, i.e., they separate

FIG. 1. The border separating regions in the plane (c,u in) where
the collision betweenp-out-of-phase solitons is elastic or genera
significant radiation loss. An example of a collision of the lat
type is given in the inset, in which the left and right panels sho
respectively, the wave formsuu(x)u and uv(x)u ~solid and dashed
lines! at the end of the simulation (t514p), and the evolution of
the fielduu(x,t)u in terms of level contours. Apparent ‘‘oscillations
of the solitons before the collision in the inset is an artifact due
mismatch between the sampling used for plotting and the nume
grid used for the simulations.
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ter the collision, emerging with smaller amplitudes@see Fig.
3~d!#. A noticeable peculiarity of this case is that the collisio
results in anincreaseof the solitons’ velocities, which is see
in the change of the slope of the contour-level plots in F
3~d!. We note that, pursuant to Eq.~3!, the soliton’s energy
monotonically increases withc2; therefore the collision-
induced decrease of the amplitude may be explained not
by radiation loss, but also by the increase of the velocit
The acceleration of the solitons due to the collision is m
salient if the initial velocityc is small; for instance, initially
quiescent solitons~with c50) acquire a large velocity afte
the interaction@see Fig. 3~e!#.

As for still heavier solitons, it is known that they ar
unstable ifu.ucr'1.011(p/2) @5,6# ~this value pertains to
c50; ucr very weakly depends on the soliton’s velocity@6#!.
In accordance with this, in the regionD ~Fig. 2! the collision
triggers a strong deformation of unstable or weakly sta
solitons@see Fig. 3~f!#. At longer times, the strong deforma
tion leads to destruction of the pulses~not shown here ex-
plicitly !.

If u is taken in the same range as in the merger regionM,
i.e., 0.15p,u,0.35p, but with a larger velocity, the colli-
sion picture seems ordinary: the solitons separate with s
decrease in their velocity and some loss in amplitude. If
initial velocity is still larger, it is possible to distinguish an
other region, markedR in Fig. 2, where the velocity show
no visible change after the collision, but emission of rad
tion takes place.

Quasielastic collisions can be naturally quantified by
ratio uout/u in of the soliton’s parameter after and before t
collision, and by the share of the net initial energy of t

,

o
al

FIG. 2. A diagram in the plane (c,u in) for different outcomes of
the collision between in-phase solitons. In the regionE the collision
is elastic. In the regionM, the solitons merge into a single pulse.
the regionS, they separate with velocities smaller than they h
before the collision. In the regionR, the velocities are not affected
by the collision, but conspicuous radiation losses are observed
the regionF, large radiation loss takes place, and the velocit
increase after the collision. In the regionD, the collision leads to
strong deformation of the solitons.
9-4
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FIG. 3. Typical examples of the collision between in-phase solitons.~a! Merger of the solitons in the regionM in Fig. 2. They collide
several times before the merger, which is accompanied by emission of radiation. The lowest panel exhibits persistent vibrations o
amplitudeuu(x50,t)u. Here and below, the middle and top panels show, respectively, the evolution at a relatively early stage (t525p), and
the single pulse emerging att5225p. ~b! Merger of initially quiescent solitons (c50). The lower and upper panels show the evolution
t,90p and the emerging single pulse att5200p. ~c! At the lower edge of regionM ~Fig. 2!, solitons undergo multiple collisions befor
they finally separate. Spontaneous symmetry breaking is evident in the final state.~d! Collision between relatively heavy solitons leads
emission of radiation jets and increase of the velocities~regionF in Fig. 2!. ~e! Interaction between two initially quiescent solitons in th
regionF ~Fig. 2!. ~f! Collision between heavy solitons which are weakly stable or unstable~regionD in Fig. 2! results in strong deformation
of the pulses, which is followed by their destruction~not shown here!.
026609-5
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solitons which is lost~to radiation! as a result of the colli-
sion. To this end, we performed a least-square-error fi
pulses emerging after the collision to the exact soliton so
tions ~2!, aiming to identify the values ofuout, and the post-
collision velocity was measured in a straightforward wa
The corresponding soliton’s energy was then calculated
means of the formula~3!.

The results of the computation are shown in Fig. 4.
noteworthy feature, which is obvious in both panels~a! and
~b!, is that inelastic effects first strengthen with the increa
of u in from very small values~which correspond, as was sa
above, to the NLS limit! to .0.3p, then they weaken, at
taining aminimum, which corresponds to the most quasiela
tic collisions, atu in'0.4p, and then they get stronger agai

FIG. 4. ~a! The ratio of the postcollision soliton’s paramet
uout , found from the least-square-error fit of the emerging pulse
the analytical wave forms~2!, to the initial valueu in . In this and the
next panels, the ratio is shown vs the initial velocityc at different
fixed values ofu in . The portion of the line corresponding tou in

50.4p with uout /u in.1, which formally contradicts energy conse
vation, is explained by the fact that in this case the actual shap
the emerging pulse is not very close to the analytical one, be
more narrow.~b! The relative energy loss due to the collision of tw
solitons.
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with increase ofu in up to .0.6p. Past the last value, th
isolated soliton is strongly unstable by itself and therefo
detailed study of collisions becomes irrelevant.

V. MULTIPLE COLLISIONS IN A FIBER RING

Since the main motivation of this work is the possibili
of generating a standing pulse by dint of collisions betwe
BG solitons, it is natural to consider multiple collisions th
may occur between two solitons traveling in opposite dir
tions in a fiber loop or if a single soliton performs a shut
motion in a fiber-grating cavity, i.e., a piece of the fiber co
fined by mirrors~in the latter case, the soliton periodical
collides with its own mirror images!. An issue for experi-
mental realization of these schemes is to couple a soliton
the loop or cavity. Using a linear coupler to connect t
system to an external fiber may be problematic, as repe
passage of the circulating soliton through the same cou
will give rise to conspicuous loss. Another solution may
to add some intrinsic gain to the system, making it similar
fiber-loop soliton lasers, where a soliton-circulation regim
may self-start@22#. It is relevant to mention that operation o
fiber-ring soliton lasers including BG component~s! as a cru-
cially important element has been reported in much of
perimental work@17–19#; in particular, stable circulation o
picosecond pulses has been observed.

Still another possibility which lends support to conside
ation of fiber-grating loops is using a figure-eight lasing co
figuration@23#, in which one loop is made of a BG while th
other one provides for the gain. It is relevant to mention t
fiber-ring laser schemes even including more than one~up to
three! BG-carrying loops were already demonstrated to o
erate quite efficiently@18#. Further detailed analysis of a
these schemes would not be relevant in this paper.

We performed simulations of the multiple collisions b
tween two identical solitons in the loop, imposing period
boundary conditions. Figure 5~a! shows an example in which
the multiple collisions slow down the solitons quite co
spicuously, forcing them to merge. As is seen, in this case
solitons undergo two collisions before the merger. The ini
valuesc50.3 andu50.3p used in this example show tha
the multiple collisions in the loop help to increase the ma
mum initial velocitycmax that admits merger of the two soli
tons by a factor of 3~at least! against the single-collision
case~cf. Fig. 2!. In fact, the largest value ofcmax correspond-
ing to the multiple collisions was found to be'0.4. In other
words, a part of the regionS from Fig. 2 is absorbed intoM
in the collision diagram corresponding to the loop config
ration. The evolution of the field at the central pointuu(x
50)u, which is also displayed in Fig. 5~a!, demonstrates tha
the emerging zero-velocity pulse is again a breather@cf. Fig.
3~a!#.

Another example of multiple collisions in the loop
shown in Fig. 5~b!, where the solitons initially haveu
50.3p and c50.7, belonging to the regionR of Fig. 2. In
this case, the solitons hardly undergo any slowing down
to the collisions, while they keep losing energy. Due to t
gradual decrease ofu, which is related to the energy by Eq

o
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g
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~3!, the solitons gradually drift to the regionE ~see Fig. 2!,
where the collision becomes elastic.

VI. EFFECT OF A LOCALIZED DEFECT
ON THE COLLISION

In Refs.@11# and@12#, it has been found that local attrac
tive defects can trap gap solitons. This fact suggests the
sibility that the merger of two colliding solitons might b
assisted by a defect placed at the collision point. We inv
tigated the effect of two kinds of local defects, which rep
sent BG suppression or increase of the refractive index,
responding, respectively, tok.0 andG.0 in Eqs.~6! ~the
single collision was considered in this case!.

FIG. 5. ~a! Multiple collisions between two solitons with th
initial valueu50.3p and initial velocity60.3 in the loop configu-
ration. The upper and lower panels, respectively, show the glo
evolution of the fielduu(x,t)u and the evolution of its maximum. In
the lower panel, the dotted parts of the curve mark two collisio
~maximum overlappings! between the two solitons before the
merge into a single pulse.~b! Multiple collisions between solitons
with the initial valueu50.3p and initial velocities60.7 in the loop
configuration.
02660
s-

s-
-
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We have found that attractive defects of either type do
actually catalyze formation of a pinned pulse that would
tain a large part of the energy of the colliding solitons. Ne
ertheless, a relatively small part of the energy gets trappe
the defect, and a small-amplitude pinned soliton appears~see
the example in Fig. 6!, which is displayed for the case of
local refractive-index perturbation, i.e.,G.0, k50. Local
BG suppression, accounted for byk.0, produces a similar
effect. We have also checked that repulsive local defe
~negativeG or k) do not produce any noticeable effect eithe

VII. SPECIAL EFFECTS IN THE SINGLE-SOLITON
DYNAMICS

A. Transformation of an input pulse into a Bragg-grating
soliton

As mentioned above, signals that are coupled into a fi
grating in a real experiment are not ‘‘prefabricated’’ BG so
tons, but rather pulses of a different form, which shou
shape themselves into solitons. After that, one can cons
collisions between them, as was done above. For this rea
it makes sense to specially consider self-trapping of BG s
tons from an input pulse in the form of a NLS soliton,

u0~x!5h sech~hx!exp~2 ikx!, v0~x!50, ~13!

whereh andk are constants, or a Gaussian pulse,

u0~x!5A exp~2gx2!, v0~x!50. ~14!

The energy of the NLS soliton~13!, defined as per Eq.~3!, is
2h, and the energy of the pulse~14! is A2Ap/g.

In fact, we also simulated the transformation of inp
pulses of other shapes, with the conclusion that the res
are quite similar to those briefly presented below for the s
and, especially, Gaussian inputs. In this connection, it is
evant to mention that, before feeding the input pulse into

al

s

FIG. 6. The collision between solitons withu50.2p and veloci-
tiesc560.2 in the case when a local perturbation of the refract
index, with G50.2 @see Eqs.~6!#, is placed at the collision point
The defect traps a small-amplitude soliton.
9-7
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fiber grating, it can pass through an ordinary nonlinear fib
which will help to preliminarily reshape any pulse into
NLS soliton of the form~13!.

Transformation of the pulses into a BG soliton was sim
lated directly within the framework of Eqs.~1!. For the NLS
soliton, the results are summarized in Fig. 7~a!, in the form
of plots showing the share of the initial energy lost into
diation @cf. Fig. 4~b!#. A noteworthy feature revealed by th
systematic simulations is that, with the increase of the
rameterh that measures the amplitude and inverse width
the initial pulse~13!, the energy-loss share first decreas
attaining an absolute minimum ath.0.8–1.0, and then
quickly increases. The fact that the relative energy loss
comes very large for largeh is easy to understand, as th
initial energy of the pulse~13! increases indefinitely withh,
while the energy of an emerging stable BG pulse, withu
<1.011(p/2) andc2,1, cannot exceed~in the present no-
tation! Emax5(4/3)p @see Eq.~3!#. Thus, an optimal shape o

FIG. 7. ~a! The relative energy loss in the process of se
trapping of the Bragg-grating soliton from the initial NLS-solito
pulse ~13! vs the soliton speed parameterk in Eq. ~13! ~at fixed
values of the amplitudeh). ~b! The same energy loss, for the ca
of the initial Gaussian pulse~14! with A51 andk51, vs the in-
verse square widthg.
02660
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the sech input signal, which provides for the most efficie
generation of the BG soliton, is suggested by these resu

For the initial Gaussian pulse~14!, similar results are
shown in Fig. 7~b!, for the caseA51. It can be seen that a
optimal value of the width factorg, for which the largest
share of the initial energy is retained in the resulting g
soliton, can be found in this case too, being'0.2. A single
pulse is formed around this value, while much smaller
larger values ofg ~such asg&0.02 or g*1) give rise to
multiple BG solitons~similarly, in the case of the NLS soli
ton initial pulse considered above, formation of multiple B
solitons is also observed when the energy of the initial in
pulse is much larger than that of the resulting BG solito!.
With the increase of the amplitudeA of the initial Gaussian
pulse~14!, the energy share that is retained in a single B
soliton decreases, similar to what was observed in Fig. 7~a!
with the increase of the amplitudeh of the NLS soliton~13!.

B. Decay of the soliton in a finite-length fiber grating
with free ends

In an experiment~unless the fiber loop or cavity is used!,
a standing soliton will be created in a fiber grating with op
edges. Then some energy leakage will take place through
free ends of the fiber segments. From the exact solution~2! it
follows that the leakage is exponentially small if the se
ment’s length l is much larger than the soliton’s spati
width, which is;1 mm in a typical situation@10,14#. More-
over, the energy leakage through the loose ends can be e
compensated~along with intrinsic fiber loss! by local gain
@14#. Nevertheless, it is an issue of interest to find the s
ton’s decay rate due to the leakage.

We addressed this issue, simulating Eqs.~1! with the free
boundary conditionsux5vx50 set at the edges of the inte
gration domain. In Fig. 8, we show the decay of the solito
amplitude in time, for different values of the domain
length, with the initial valueu in50.51. The initial increase o
the amplitude is a result of temporary self-compression
the pulse due to its interaction with the edges. As a refere
we mention that, in the case of the shortest fiber grat

FIG. 8. Decay of the fielduu(x,t)u at the central point of the
finite fiber grating of lengthl due to the energy loss through the fre
ends.
9-8
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considered here, withl 58, it takes a timet542.2 for a
decrease of the amplitude by a factor ofe.

VIII. CONCLUSION

We have presented the results of systematic studie
collisions between moving solitons in fiber gratings. Vario
outcomes of the collision were identified, the most intere
ing one being merger of the solitons into a single ze
velocity pulse, which suggests a way to create pulses
‘‘standing light.’’ The merger occurs for solitons whose e
ergy takes values between 0.15 and 0.35 of its maxim
value, while the velocity is limited bycmax'0.2 of the limit
velocity. If the energy is larger, another noteworthy outco
is acceleration of the solitons as a result of the collisi
especially when their initial velocities are small. In the ca
when the solitons pass through each other, the inelasticit
the collision was quantified by the relative energy loss. If
energy exceeds the soliton’s instability threshold, the co
sion results in strong deformation of the solitons, which
followed by their destruction. Simulations of multiple coll
-

a
.

n

o

B
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sions between two solitons in the fiber-loop configurati
show that the largest initial velocity admitting the merg
increases toc<cmax'0.4 of the limit velocity. It was also
shown that attractive local defects do not alter the ove
picture, although a small-amplitude trapped pulse appear
this case. It was also shown in an analytical form that f
BG solitons can be efficiently slowed down~to values of the
velocity that admit the fusion of colliding solitons! by pass-
ing them through an apodized fiber grating with a gradua
increasing value of the Bragg reflectivity. Additionally, sp
cific effects were investigated in one-soliton dynamics, su
as transformation of a single-component input pulse int
Bragg-grating soliton, and decay of the soliton in a finit
length fiber grating due to the energy leakage through lo
edges.
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